
1. Introduction
The influence of complex terrain on precipitation patterns causes some of the most pronounced climate gradients 
on Earth, conditions freshwater resources, and plays a fundamental role in triggering natural hazards like floods, 
landslides, and avalanches. Hence, the representation of the spatial and temporal distribution of precipitation 
over complex terrain is important. Unfortunately, this environment poses challenges to ground-based observation 
networks (Hou et al., 2014). Satellite-based precipitation products (SPPs) offer an alternative due to their ability 
to capture the space-time variability of rainfall with quasi-global coverage.

The great success of the Tropical Rainfall Measuring Mission (TRMM) and its successor Global Precipitation 
Measurement (GPM) mission accelerated the development of precipitation retrieval algorithms. For example, the 
Integrated Multi-satellitE Retrievals for GPM (IMERG) combines infrared (IR) radiances and passive microwave 
(PMW) precipitation retrievals to take advantage of the strengths of both IR and PMW and create global-scale 
precipitation estimates at high spatiotemporal resolution. However, SPPs are challenged over complex terrain in 
terms of detection and quantification of precipitation (Derin & Yilmaz, 2014; Derin et al., 2016; Derin, Anagnostou, 
et al., 2019; Derin, Nikolopoulos, & Anagnostou, 2019; Dinku et al., 2008, 2010; Hirpa et al., 2010). In general, 
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SPP estimation uncertainty can be related to the indirect nature of the measurement, the spatial heterogeneity 
of the precipitation fields, the sensors resolution and sensitivity, and the retrieval algorithms. Specific biases 
have been reported with orographic precipitation, such as the difficulties originating from the scattering-based 
PMW algorithms to identify “warm rain” that occurs without substantial quantities of upper-level ice particles. 
The resulting underestimation is more distinct over mountainous regions (Derin et al., 2018; Kubota et al., 2009; 
Yamamoto et al., 2017).

Research efforts have been made to improve the accuracy of SPP estimates over complex terrain. Kwon 
et  al.  (2008) showed that the TRMM Microwave Imager (TMI) retrieval performance depends on the topo-
graphically forced upslope motion, lower-level wind, and horizontal moisture flux. These factors were used to 
develop correction factors in the Korean Peninsula. The authors concluded that the correction using low-level 
moisture convergence combined with slope shows significant improvement regardless of rainfall intensity. Shige 
et al. (2013) built on the Kwon et al. (2008) study and use orographically forced upward motion and moisture flux 
convergence to improve GSMaP heavy rainfall estimates associated with shallow orographic rainfall systems.

In the light of this literature and validation studies conducted by Derin and Yilmaz (2014), Derin et al. (2016, 2018), 
Derin, Anagnostou, et al. (2019), and Anagnostou et al. (2017), it is established that precipitation mechanisms 
over complex terrain are multifactorial and depend on environmental and physical parameters. Yet much of the 
literature on SPP validation over complex terrain is conducted against point-based in-situ measurements. Derin, 
Anagnostou, et al. (2019) concluded that while in-situ observations are extremely important, they only provide 
limited rainfall spatial representativeness over complex terrain. The spatial-scale mismatch between SPP and 
gauges should be considered by using observations from remote sensors that better characterize the spatial varia-
bility of precipitation over complex terrain. In this study, the high-resolution, high-quality precipitation estimates 
from the Ground Validation Multi-Radar/Multi-Sensor (GV-MRMS; Kirstetter et al., 2012, 2018, 2020) is used 
as ground reference at the native resolution of IMERG (30 min and 0.1𝐴𝐴

◦ ). The evaluation is conducted over 
various complex terrain regions in CONUS to gather diverse and representative features and trends, that can be 
extrapolated to other regions of the world. Such transferability and representativeness are unprecedented in the 
literature. Moreover, the investigation of links between SPP errors and environmental and physical parameters is 
an important step toward mapping precipitation in complex terrain and provides useful information to algorithm 
developers and data users. Environmental and physical parameters used by Shige et al.  (2013; orographically 
forced upward motion and horizontal moisture flux convergence) are used to condition the matchup data sets 
to refine the analysis of SPP performance. This study aims to answer the following question: Do atmospheric 
conditions and interaction with topographic features condition IMERG-Final quantification performance over 
complex terrain?

2. Study Region and Data Sets
Complex terrain classification is performed by following Daly et al. (1994). The ASTER global digital elevation 
model version 2 with 1 arc-second (∼30 m) resolution is used to compute elevation gradients for CONUS. Gradi-
ents less than 2 m/grid are classified as flat and disregarded from the analysis, and the rest of the pixel grids are 
classified as complex terrain (Figure 1a). Because interactions between atmospheric fluxes and terrain are driving 
factors of precipitation generation and satellite performance, complex terrain regions are isolated to focus our 
analysis on the orographically induced precipitation processes.

The ground-based, radar-rain gauge quantitative precipitation estimation (QPE), GV-MRMS reference is gener-
ated at 0.1° spatial and 30-min temporal resolution (Derin et  al.,  2021,  2022; Kirstetter et  al.,  2012,  2018). 
Advanced data integration techniques are used to create 2D precipitation mosaic grids and QPE by blending radar 
and rain gauge data to provide a high-quality reference data set (Kirstetter et al., 2012, 2014, 2015). GV-MRMS 
also provides a radar quality index (RQI) to represent the level of uncertainty, that is used to select the best 
ground-radar estimates that can be otherwise degraded in complex terrain (e.g., Delrieu et al., 2009). A high 
quality and standardized reference are obtained by removing GV-MRMS estimates associated with RQI estimates 
lower than 100% across the study domain for SPP validation. In this study, GV-MRMS is used over a period of 
12 months in 2015.

The IMERG algorithm intercalibrates, merges and interpolates all available microwave retrievals, 
microwave-calibrated IR satellite estimates, and rain gauge measurements in two ways: (a) PMW data are morphed 
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using quasi Lagrangian time interpolation and estimated precipitation feature motion and (b) IR esti mates are 
merged with PMW using a Kalman filter when PMW estimates are too sparse. IMERG is run twice in near-real 
time and once after the monthly gauge analysis is received for adjustment. IMERG Final “calibrated” fields are 
created by calculating ratios between the original monthly satellite-only and monthly gauge analysis. In this 
study, IMERG version 06B Final “calibrated” (IM-F) is evaluated at its native resolution of 30 min and 0.1𝐴𝐴

◦ .

The Rapid Refresh (RAP) is the continental-scale NOAA hourly-updated assimilation/modeling system opera-
tional at NCEP at 13 km spatial resolution. RAP covers North America and is comprised primarily of a numerical 
forecast model and an analysis/assimilation system to initialize that model. The RAP uses the community-based 
Advanced Research version of the Weather Research and Forecasting Model (ARW) and the Gridpoint Statis-
tical Interpolation analysis system (GSI) (Benjamin et al., 2016). To calculate the environmental parameters of 
orographically forced upward motion and horizontal moisture flux convergence, wind speed, relative humidity 
and temperature variables are obtained from RAP at the 13 km and hourly resolution.

3. Evaluation Method
The analysis is performed at the IM-F native resolution so that the comparison results remain free of undesir-
able impacts caused by statistical or dynamical resampling (Kirstetter et al., 2012, 2015). Only matched grids 
classified as complex terrain are used. GV-MRMS and IM-F rain/no rain threshold is set at 0.1 mm h −1 and 

Figure 1. (a) The study region (CONUS) and the complex terrain regions. Bivariate histogram of GV-MRMS (b) mean rainfall magnitudes (mm/h) and (c) sample size 
as a function of w (m/s) and Q (1/s) environmental parameters.
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only matchup data sets with RQI of 100 (i.e., best quality) are used. Cells reporting snow are disregarded in this 
analysis. The comparison analysis is conditioned by environmental parameters driving orographic precipitation 
mechanisms.

Mechanisms by which mountains and hills affect precipitating clouds are complex and depend on many factors 
(Houze, 2012; Kirschbaum et al., 2018; Lin, 2007). Linear theory of orographic precipitation modeling charac-
terizes orographic precipitation with two parameters since a good part of condensation is caused by forced ascent 
over fixed terrain (Barstad & Smith, 2005). The key components, as proposed by Barstad and Smith (2005), are 
the advection of vertically integrated condensed water with forced vertical motion. Orographic lifting of air mass 
depends on the direction of the incoming wind with respect to the orientation of the terrain barrier. Moisture 
transport depends on air parcel characteristics (i.e., temperature and relative humidity) and wind speed in the 
lower troposphere. Following Shige et al. (2013), orographic lifting and moisture availability are determined by 
orographically forced vertical motion (w, m/s) and horizontal moisture flux convergence (Q, s −1) environmen-
tal variables. The vertical motion w can be estimated from the lower boundary condition flow over mountains 
(Lin, 2007):

𝑤𝑤 = 𝑽𝑽 𝐻𝐻 ⋅ ∇ℎ (1)

where h(x,y) is terrain height and 𝐴𝐴 𝑽𝑽 ℎ is a surface horizontal wind vector. Surface horizontal wind values are 
calculated by using wind speeds from surface up to 700 hPa from RAP (13 km hourly resolution). Horizontal 
moisture flux convergence (Q, s −1) can be calculated as (Banacos & Schultz, 2005):

𝑄𝑄 = −∇ ⋅ (𝑞𝑞𝑽𝑽 𝐻𝐻 ) (2)

where q is specific humidity (kg/kg).

Orographically forced vertical motion and horizontal moisture flux convergence can take on negative and positive 
values. In general, positive (negative) w magnitudes indicate an upward (downward) motion. Positive (negative) 
Q magnitudes indicate a moisture convergence (divergence) where vertically integrated moisture is increasing 
(decreasing) since moisture is concentrating (spreading out).

4. Results
Understanding the links between SPP uncertainty and horizontal moisture flux convergence and orographi-
cally forced vertical motion holds promises to diagnose SPP performance over complex terrain precipitation 
regimes and provide useful information to algorithm developers and data users. By relating these environmental 
parameters to heavy rainfall, Shige et al. (2013) categorized warm-rain processes that are enhanced by low-level 
orographic lifting of maritime air with thresholds applied on w (w > 0.1 m s −1) and Q (Q > 0.5 × 10 −6 s −1). This 
study follows a more systematic and quantitative approach by seamlessly considering the full spectrum of w and 
Q environmental parameters (including negative values associated with subsidence and flux divergence) that are 
associated with various precipitation mechanisms and magnitudes.

To improve our understanding of the relation between w, Q, and rainfall, and to be able to answer the ques-
tion of “is there a relationship between environmental parameters and ground reference GV-MRMS,” Figure 1 
displays a bivariate histogram of GV-MRMS rainfall (mm h −1) as a function of w (m/s) and Q (s −1). Each w 
and Q matched bin are colored by the average rainfall magnitude (in mm h −1) of the corresponding GV-MRMS 
population (Figure 1b). Statistics are displayed when the sample size is greater than 100 (Figure 1c). Four quad-
rants are determined by the signs of w and Q, each of them representing different precipitation mechanisms 
over complex terrain. Quadrant (Q1) corresponds to positive w (upward motion) and Q (convergence); quadrant 
(Q2) corresponds to positive Q and negative w (downward motion); quadrant (Q3) corresponds to negative w 
and Q (divergence); quadrant (Q4) corresponds to positive w and negative Q. Figure 1 extends the depiction of 
precipitation variability outside conditions that are traditionally associated with warm orographic rain (Shige 
et al., 2013). Importantly, precipitation displays variability and transitions smoothly from one quadrant to another 
suggesting that thresholds applied on environmental conditions do not effectively isolate precipitation processes 
in complex terrain. The highest GV-MRMS mean rainfall rate are found to be associated with positive high Q 
values (>7e −7 s −1) and moderate w values in the range (−0.09–0.12) (m s −1). It confirms that vigorous moisture 
flux convergence is a strong condition for heavy rainfall. The highest mean rainfall magnitudes observed by 
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GV-MRMS over Q1 can be explained by shallow and deep convective rainfall mechanisms interacting with the 
topography, both of which producing heavy rainfall over short periods of time. Another precipitation mechanism 
that can be inferred for this quadrant is upward motion over heated terrain during daytime on both sides of the 
mountain that converges at the crest and form cumulus clouds. In Q2, GV-MRMS mean rainfall magnitudes 
decrease sharply toward higher negative w magnitudes. Negative w, positive Q, and light rainfall magnitudes in 
Q2 can be explained by lee side convergence due to diurnal variability (Kirshbaum et al., 2018). During daytime 
air moves into valleys and mountain gaps, converging in the lee side of the mountain (Hagen et al., 2011). During 
nighttime surface-based horizontal convergence focuses on lower altitudes surrounding orography. In Q3 the 
GV-MRMS average rainfall magnitudes decrease sharply when associated with low Q magnitudes (around 0 s −1), 
meaning there is limited to no horizontal moisture flux for rainfall. The lowest GV-MRMS mean rainfall magni-
tudes are reported for negative w and Q values that are close to zero. 71.6% of the GV-MRMS mean rainfall 
magnitudes in Q3 are zero, and positive GV-MRMS average rainfall magnitudes are in the range (0–2) mm/h. The 
high end of rainfall rates in this quadrant are associated with higher magnitudes of negative Q. The relationship 
between GV-MRMS rainfall magnitudes (0.5–2) mm/h and moisture flux divergence and downward motion in 
this quadrant (Q3) will be investigated in future studies. From Figure 1b, GV-MRMS occurrence of zero rainfall 
in Q4 is on par with Q3 (70.4%). The highest GV-MRMS precipitation occurrence (36%) is reported in Q2 and 
followed by Q1 (27%). Meanwhile the lowest GV-MRMS occurrence is reported in Q4 (18%) and followed by 
Q3 (19%).

The detection capabilities of IM-F are analyzed with categorical skill scores. IM-F and GV-MRMS either 
do or do not detect rainfall and the performance of IM-F detection can be calculated with Heidke skill score 
(Heidke, 1926). The two-dimensional HSS approach (2D-HSS) is particularly useful for determining the opti-
mum delineation of nonzero rain rates over challenging conditions (Derin et al., 2021; Petty & Li, 2013). Figure 2 

Figure 2. 2D HSS of IM-F conditioned by w and Q quadrants (a) Q2 (w ≤ 0 m/s and Q > 0 1/s), (b) Q1 (w > 0 m/s and 
Q > 0 1/s), (c) Q3 (w ≤ 0 m/s and Q ≤ 0 1/s), and (d) Q4 (w > 0 m/s and Q ≤ 0 1/s).
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quantify IM-F accuracy relative to that of random chance and determine the optimum precipitation delinea-
tion (see Derin et al., 2021 for more details). The colored map represents the HSS values for different thresh-
olds applied both to GV-MRMS and IM-F for each quadrant (Q1, Q2, Q3, and Q4). The GV-MRMS (IM-F) 
rain/no-rain threshold values are indicated on the x-axis (y-axis). Overall, maximum HSS values are found in Q1 
and Q2 corresponding to positive moisture flux convergence Q. It suggests that the magnitude of Q impacts IM-F 
detection performance more than vertical motions w. The highest HSS values over Q1 and Q2 (>0.4) are found 
in the precipitation rate range (0.3–5 mm/h), indicating that IM-F overall delineates these rainfall rates the best. 
HSS values decrease as we move to Q3 and Q4, highlighting challenges to delineate precipitation magnitudes in 
conditions of moisture flux divergence. Overall, IM-F rainfall detection and delineation of magnitude has signif-
icant dependence on different environmental conditions.

The quantification capabilities of IM-F can be analyzed with a density scatter plot. Next step investigates whether 
IM-F replicates such variability that we have seen with GV-MRMS in Figure 1. Extracting the full ranges of w 
and Q values extends the understanding of precipitation processes in complex terrain and provides a significant 
leverage in terms of understanding SPP uncertainty sources. Density scatter plots of GV-MRMS versus IM-F 
(mm h −1) are plotted in Figure 3, conditioned by environmental parameters to provide additional insight on this 
relation. This plot provides limited insight to make inferences regarding IM-F overall performance compared to 
GV-MRMS as a function of w and Q environmental parameters. The performance of IM-F is visually similar 
across quadrants.

Figure 3. Density scatter plot of GV-MRS versus IM-F (mm/h) conditioned by w and Q quadrants (a) Q2 (w ≤ 0 m/s and 
Q > 0 1/s), (b) Q1 (w > 0 m/s and Q > 0 1/s), (c) Q3 (w ≤ 0 m/s and Q ≤ 0 1/s), and (d) Q4 (w > 0 m/s and Q ≤ 0 1/s).
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Density scatterplots (Figure 3) and bulk statistics (e.g., bias, correlation) show limited insight into the perfor-
mance of IM-F (Kirstetter et  al.,  2020) and its sensitivity to the precipitation processes captured in different 
quadrants. More physical insight is provided in Figure 4 to understand how orographic enhancement mechanisms 
impact the performance of IM-F. For each pair of GV-MRMS, IM-F pair, Figure 4 shows the associated envi-
ronmental conditions by displaying the relative frequency of occurrence for four quadrants. It indicates which 
environmental conditions and precipitation mechanisms are more often associated with a given GV-MRMS and 
IM-F precipitation rate pair and helps interpret the (dis)agreement between both products. The relative frequency 
of occurrence (%) of each of the four environmental conditions sums up to 100% for a given GV-MRMS and IM-F 
bin. If IM-F performance does not depend on the w and Q environmental parameters, then each panel in Figure 4 
should be uniform. On the contrary, each panel highlights IM-F performance issues over complex terrain.

In general, higher GV-MRMS rainfall magnitudes (>3 mm h −1) are associated with higher relative frequency 
of occurrence (>40%) of w and Q parameters in Q1 and Q2 quadrants (positive Q magnitudes). On the other 
hand, lower GV-MRMS rainfall magnitudes (<1 mm h −1) are associated with relatively higher relative frequency 
of occurrence (10%–30%) of w and Q parameters in Q3 and Q4 quadrants (negative Q magnitudes). It can be 
inferred that the magnitude of Q impacts precipitation more than the magnitude of w. In particular, Figure 4b 
(Q1, positive Q and w) shows that higher GV-MRMS rainfall magnitudes (>3 mm h −1) are related to higher 
occurrence (>40%) of positive Q and w (as also seen in Figure 1b). In this quadrant, IM-F shows significant over- 

Figure 4. Relative frequency of occurrence of w (m/s) and Q (1/s) as functions of GV-MRMS and IM-F rainfall magnitudes 
(mm/h) conditioned by w and Q quadrants (a) Q2 (w ≤ 0 m/s and Q > 0 1/s), (b) Q1 (w > 0 m/s and Q > 0 1/s), (c) Q3 
(w ≤ 0 m/s and Q ≤ 0 1/s), and (d) Q4 (w > 0 m/s and Q ≤ 0 1/s).
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and underestimation for GV-MRMS rainfall magnitudes in the range (0.8–13) mm h −1. This can be explained 
by shallow and deep convective rainfall mechanisms interacting with topography. Shallow orographic rainfall 
mechanisms generate low ice content compared to deep convection, hence the detection of shallow orographic 
rainfall mechanism by PMW is challenging. In Q1, IM-F probably underestimates shallow rainfall mechanisms 
and slightly overestimates deep convective rainfall mechanisms. Figure 4a (Q2) indicates that higher GV-MRMS 
rainfall magnitudes (>3 mm h −1) are also related to higher occurrence (>30%) of positive Q and negative w. 
Note that IM-F performance in Q2 is slightly more uniform compared to Q1. A cluster with low GV-MRMS 
rainfall magnitudes ((0.1–0.5) mm h −1) is overestimated by IM-F ((0.1–3.2) mm h −1), with occurrence of approx-
imately 30% w < 0 and Q > 0. The relative frequency of occurrence of w and Q in Q3 is highest (∼15%) at lower 
GV-MRMS rainfall magnitudes (0–0.5 mm h −1). Similar performance is observed in Q4. Mechanisms related to 
these rainfall magnitudes will be investigated further in a future study.

5. Conclusions
In this letter, IM-F quantification performance dependence on physical and environmental parameters over 
complex terrain is evaluated. This is performed through a novel and integrated approach using orographically 
forced vertical motion and horizontal moisture flux convergence to trace the performance dependence of IM-F 
on the environmental parameters. The analysis is conducted by conditional analysis of IM-F against ground refer-
ence GV-MRMS using environmental parameters.

The hypothesis “Does IM-F quantification performance over complex terrain depend on w and Q environmental 
parameters?” is confirmed. Understanding the links between IM-F quantification performance and environmental 
parameters is especially important for the development of multi-sensor precipitation products. It is suggested to 
incorporate these parameters in precipitation algorithm to improve orographic precipitation estimation.

Gebregiorgis and Hossain (2013) work showed the dominance of topography over climate features on SPP uncer-
tainty, and they concluded that inclusion of climate information somewhat redundant since topography is also 
a governing factor for Koppen climate classification. While ingesting topography can help isolate SPP uncer-
tainties over complex terrain, incorporating movement of atmosphere and moisture conditioned by topography 
gives us further insight into underlying sources of SPP uncertainty. Moreover, in this study it has been shown 
that bulk statistics and traditional graphical tools could mislead us into thinking that there is no “visible” trend 
or relationship. The performance dependence of IM-F on w and Q environmental parameters were observed by 
using relative frequency of occurrence (%) instead of density (%).

This initial study is not the complete story however it is clear that orographic enhancement mechanisms can be 
characterized by environmental parameters. Considering the full spectrum of w and Q environmental parameters 
display precipitation variability that transition smoothly from one quadrant to another. The highest GV-MRMS 
mean rainfall rate are found to be associated with positive Q values (>7e−07 1/s) and moderate w values in 
the range (−0.09–0.12 m/s), which confirms that vigorous moisture flux convergence is a strong condition for 
heavy rainfall. This can be associated with shallow and deep convective mechanisms interacting with topogra-
phy. Light  rainfall is observed in Q2 that can be interpreted as lee side convergence due to diurnal variability. 
IM-F shows significant performance dependence (significant over- and underestimation) for GV-MRMS rainfall 
magnitudes in the range (0.8–13) mm/h in Q1. It can be related to the IM-F underestimating shallow rainfall 
mechanisms and slightly overestimating deep convective mechanisms. The main take-way point is that satellite 
precipitation algorithms should incorporate environmental parameters to improve or adjust Level-2 or Level-3 
estimates over complex terrain.

This study is conducted over the whole CONUS complex terrain. Significant performance differences may exist 
across regions, seasons, and satellite estimates which will be investigated in a future study. As future directions 
of this study, characterization of orographic rainfall will be refined, and mechanisms related to Q3 and Q4 will 
be investigated in more detail.
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Data Availability Statement
The GV-MRMS precipitation data are available at the NASA Global Hydrology Resource Center (GHRC) 
(http://dx.doi.org/10.5067/GPMGV/MRMS/DATA101). The IMERG precipitation products are available online 
(https://arthurhouhttps.pps.eosdis.nasa.gov).

References
Anagnostou, M. N., Kalogiros, J., Nikolopoulos, E., Derin, Y., Anagnostou, E. N., & Borga, M. (2017). Satellite rainfall error analysis with the 

use of high-resolution X-band dual-polarization radar observations over the Italian Alps, Perspectives on Atmospheric Sciences. Springer 
Atmospheric Sciences. https://doi.org/10.1007/978-3-319-35095-0_39

Banacos, P. C., & Schultz, D. M. (2005). The use of moisture flux convergence in forecasting convective intiation: Historical and operational 
prespectives. Forecasters’ forum, 20(3), 351–366. https://doi.org/10.1175/waf858.1

Barstad, I., & Smith, R. B. (2005). Evaluation of an orographic precipitation model. Journal of Hydrometeorology, 6(1), 85–99. https://doi.
org/10.1175/jhm-404.1

Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., et al. (2016). A North American hourly assimilation 
and model forecast cycle: The rapid refresh. Monthly Weather Review, 144(4), 1669–1694. https://doi.org/10.1175/mwr-d-15-0242.1

Daly, C., Neilson, R. P., & Phillips, D. L. (1994). A statistical-topographic model for mapping climatological precipitation over mountain-
ous terrain. Journal of Applied Meteorology and Climatology, 33(2), 140–158. https://doi.org/10.1175/1520-0450(1994)033<0140
:astmfm>2.0.co;2

Delrieu, G., Boudevillain, B., Nicol, J., Chapon, B., Kirstetter, P., Andrieu, H., & Faure, D. (2009). Bollène-2002 Experiment: Radar quantitative 
precipitation estimation in the Cévennes-Vivarais region, France. Journal of Applied Meteorology and Climatology, 48(7), 1422–1447. https://
doi.org/10.1175/2008jamc1987.1

Derin, Y., Anagnostou, E., Anagnostou, M. N., Kalogiros, J., Casella, D., Marra, A. C., et al. (2018). Passive microwave rainfall error analysis 
using high-resolution X-band Dual Polarization radar observations in complex terrain. IEEE Transactions on Geoscience and Remote Sensing, 
56(5), 2565–2586. https://doi.org/10.1109/tgrs.2017.2763622

Derin, Y., Anagnostou, E., Berne, A., Borga, M., Boudevillain, B., Buytaert, W., et al. (2016). Multiregional satellite precipitation products eval-
uation over complex terrain. Journal of Hydrometeorology, 17(6), 1817–1836. https://doi.org/10.1175/jhm-d-15-0197.1

Derin, Y., Anagnostou, E., Berne, A., Borga, M., Boudevillain, B., Buytaert, W., et al. (2019). Evaluation of GPM-era global satellite-based 
precipitation products over multiple complex terrain regions. Remote Sensing, 15(24), 2936. https://doi.org/10.3390/rs11242936

Derin, Y., Kirstetter, P.-E., Brauer, N., Gourley, J. J., & Wang, J. (2022). Evaluation of IMERG satellite precipitation over land-coast-ocean 
continuum. Part II: Quantification. Journal of Hydrometeorology.

Derin, Y., Kirstetter, P.-E., & Gourley, J. J. (2021). Evaluation of IMERG satellite precipitation over land-coast-ocean continuum. Part I: Detec-
tion. Journal of Hydrometeorology, 22, 2843–2859.

Derin, Y., Nikolopoulos, E., & Anagnostou, E. N. (2019). Estimating extreme precipitation using multiple satellite-based precipitation products. 
In V. Maggioni & C. Massari (Eds.), Extreme hydroclimatic events and multivariate hazards in a changing environment (pp. 163–190). Else-
vier. https://doi.org/10.1016/B978-0-12-814899-0.00007-9

Derin, Y., & Yilmaz, K. K. (2014). Evaluation of multiple satellite-based precipitation products over complex terrain. Journal of Hydrometeorol-
ogy, 15(4), 1498–1516. https://doi.org/10.1175/jhm-d-13-0191.1

Dinku, T., Chidzambwa, S., Ceccato, P., Connor, S. J., & Ropelewski, C. F. (2008). Validation of high-resolution satellite rainfall products over 
complex terrain. International Journal of Remote Sensing, 29(14), 4097–4110. https://doi.org/10.1080/01431160701772526

Dinku, T., Ruiz, F., Connor, S. J., & Ceccato, P. (2010). Validation and intercomparison of satellite rainfall estimates over Columbia. Journal of 
Applied Meteorology and Climatology, 49(2), 1004–1014. https://doi.org/10.1175/2009jamc2260.1

Gebregiorgis, A. S., & Hossain, F. (2013). Understanding the dependence of satellite rainfall uncertainty on topography and climate for hydro-
logic model simulation. IEEE Transactions on Geoscience and Remote Sensing, 51, 1–718. https://doi.org/10.1109/tgrs.2012.2196282

Hagen, M., van Baelen, J., & Richard, E. (2011). Influence of the wind profile on the initiation of convection in mountainous terrain. Quarterly 
Journal of the Royal Meteorological Society, 137(S1), 224–235. https://doi.org/10.1002/qj.784

Heidke, P. (1926). Berechnung der Erfolges und der Gute der Windstarkevorhersagen im Sturmwarnungdienst (Calculation of the success and 
goodness of wind strength forecasts in the Storm Warning Service). Geografiska Annaler, 8(4), 301–349. https://doi.org/10.1080/20014422.
1926.11881138

Hirpa, F. A., Gebremichael, M., & Hopson, T. (2010). Evaluation of high-resolution satellite precipitation products over very complex terrain in 
Ethiopia. Journal of Applied Meteorology and Climatology, 49(5), 1044–1051. https://doi.org/10.1175/2009jamc2298.1

Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., et al. (2014). The global precipitation measurement 
mission. Bulletin America Meteorology Social, 95(5), 701–722. https://doi.org/10.1175/bams-d-13-00164.1

Houze, R. A., Jr. (2012). Orographic effects on precipitating clouds. Reviews of Geophysics, 50(1), rg1001. https://doi.org/10.1029/2011rg000365
Kirshbaum, D. J., Adler, B., Kalthoff, N., Barthlott, C., & Serafin, S. (2018). Moist orographic convection: Physical mechanisms and links to 

surface-exhange processes. Atmosphere, 9(80). https://doi.org/10.3390/atmos9030080
Kirstetter, P.-E., Hong, Y., Gourley, J. J., Cao, Q., Schwaller, M., & Petersen, W. (2014). A research framework to bridge from the Global Precip-

itation Measurement mission core satellite to the constellation sensors using ground radar-based National Mosaic QPE. In Remote sensing of 
the terrestrial water cycle, AGU geophysical monograph series. John Wiley.

Kirstetter, P.-E., Hong, Y., Gourley, J. J., Chen, S., Flamig, Z., Zhang, J., et al. (2012). Towards a framework for systematic error modeling of 
spaceborne precipitation radar with NOAA/NSSL ground radar-based national mosaic QPE. Journal of Hydrometeorology, 13(4), 1285–1300. 
https://doi.org/10.1175/jhm-d-11-0139.1

Kirstetter, P.-E., Hong, Y., Gourley, J. J., Schwaller, M., Petersen, W., & Cao, Q. (2015). Impact of sub-pixel rainfall variability on space-
vorne precipitation estimation: Evaluating the TRMM 2A25 product. The Quarterly Journal of the Royal Meteorological Society, 141(688), 
953–966. https://doi.org/10.1002/qj.2416

Kirstetter, P.-E., Karbalaee, N., Hsu, K., & Hong, Y. (2018). Probabilistic precipitation rate estimates with space-based infrared sensors. The 
Quarterly Journal of the Royal Meteorological Society, 144(S1), 191–205. https://doi.org/10.1002/qj.3243

Acknowledgments
The authors acknowledge the efforts made 
by the NASA science team for making 
IMERG precipitation data accessible. 
Support from the NASA Global Precip-
itation Measurement Ground Validation 
program under Grant NNX16AL23G and 
the Precipitation Measurement Missions 
program under Grant 80NSSC19K0681 
is acknowledged. The authors thank two 
anonymous reviewers whose comments 
helped to improve the paper.

http://dx.doi.org/10.5067/GPMGV/MRMS/DATA101
https://arthurhouhttps.pps.eosdis.nasa.gov
https://doi.org/10.1007/978-3-319-35095-0_39
https://doi.org/10.1175/waf858.1
https://doi.org/10.1175/jhm-404.1
https://doi.org/10.1175/jhm-404.1
https://doi.org/10.1175/mwr-d-15-0242.1
https://doi.org/10.1175/1520-0450(1994)033%3C0140:astmfm%3E2.0.co;2
https://doi.org/10.1175/1520-0450(1994)033%3C0140:astmfm%3E2.0.co;2
https://doi.org/10.1175/2008jamc1987.1
https://doi.org/10.1175/2008jamc1987.1
https://doi.org/10.1109/tgrs.2017.2763622
https://doi.org/10.1175/jhm-d-15-0197.1
https://doi.org/10.3390/rs11242936
https://doi.org/10.1016/B978-0-12-814899-0.00007-9
https://doi.org/10.1175/jhm-d-13-0191.1
https://doi.org/10.1080/01431160701772526
https://doi.org/10.1175/2009jamc2260.1
https://doi.org/10.1109/tgrs.2012.2196282
https://doi.org/10.1002/qj.784
https://doi.org/10.1080/20014422.1926.11881138
https://doi.org/10.1080/20014422.1926.11881138
https://doi.org/10.1175/2009jamc2298.1
https://doi.org/10.1175/bams-d-13-00164.1
https://doi.org/10.1029/2011rg000365
https://doi.org/10.3390/atmos9030080
https://doi.org/10.1175/jhm-d-11-0139.1
https://doi.org/10.1002/qj.2416
https://doi.org/10.1002/qj.3243


Geophysical Research Letters

DERIN AND KIRSTETTER

10.1029/2022GL100186

10 of 10

Kirstetter, P.-E., Petersen, W., Kummerow, C. D., & Wolff, D. B.(2020). Integrated multi-satellite evaluation for the global precipitation measure-
ment: Impact of precipitation types on spaceborne precipitation estimation, In Satellite precipitation measurement, Advances in global change 
Research (Vol. 69, pp. 583–608). Springer.

Kubota, T., Shige, S., Aonashi, K., & Okamoto, K. (2009). Development of nonuniform beamfilling correction method in rainfall retrievals for 
passive microwave radiometers over ocean using TRMM observations. Journal of the Meteorological Society of Japan, 87A, 153–164. https://
doi.org/10.2151/jmsj.87a.153

Kwon, E.-H., Sohn, B.-J., Chang, D.-E., Ahn, M.-H., & Yang, S. (2008). Use of numerical forecasts for improving TMI rain retrievals over the 
mountainous area in Korea. Journal of Applied Meteorology and Climatology, 47(7), 1995–2007. https://doi.org/10.1175/2007jamc1857.1

Lin, Y. L. (2007). Mesoscale dynamics (p. 630). Cambridge University Press.
Petty, G. W., & Li, K. (2013). Improved passive microwave retrievals of rain rate over land and ocean. Part II: Validation and intercomparison. 

Journal of Atmospheric and Oceanic Technology, 30(11), 2509–2526. https://doi.org/10.1175/JTECH-D-12-00184.1
Shige, S., Kida, S., Ashiwake, H., Kubota, T., & Aonashi, K. (2013). Improvement of TMI rain retrievals in mountainous areas. Journal of 

Applied Meteorology and Climatology, 52(1), 242–254. https://doi.org/10.1175/jamc-d-12-074.1
Yamamoto, M. Y., Shige, S., Yu, C.-K., & Cheng, L.-W. (2017). Further improvement of the heavy orogprahic rainfall retrievals in the GSMaP 

algorithm for microwave radiometers. Journal of Applied Meteorology and Climatology, 56(9), 2607–2619. https://doi.org/10.1175/
jamc-d-16-0332.1

https://doi.org/10.2151/jmsj.87a.153
https://doi.org/10.2151/jmsj.87a.153
https://doi.org/10.1175/2007jamc1857.1
https://doi.org/10.1175/JTECH-D-12-00184.1
https://doi.org/10.1175/jamc-d-12-074.1
https://doi.org/10.1175/jamc-d-16-0332.1
https://doi.org/10.1175/jamc-d-16-0332.1

	Evaluation of IMERG Over CONUS Complex Terrain Using Environmental Variables
	Abstract
	Plain Language Summary
	1. Introduction
	2. Study Region and Data Sets
	3. Evaluation Method
	4. Results
	5. Conclusions
	Data Availability Statement
	References


